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Simplicity of Eigenvalues in the Anderson Model
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We give a transparent and intuitive proof that all eigenvalues of the Anderson model in
the region of localization are simple.

The Anderson tight binding model is given by the random Hamiltonian Hω =
−� + Vω on �2(Zd ), where �(x, y) = 1 if |x − y| = 1 and zero otherwise, and
the random potential Vω = {Vω(x), x ∈ Zd} consists of independent identically
distributed random variables whose common probability distribution µ has a
bounded density ρ. It is known to exhibit exponential localization at either high
disorder or low energy.(1,3,4)

We prove a general result about eigenvalues of the Anderson Hamiltonian
with fast decaying eigenfunctions, from which we conclude that in the region
of exponential localization all eigenvalues are simple. We call ϕ ∈ �2(Zd ) fast
decaying if it has β-decay for some β > 5d

2 , that is, |ϕ(x)| ≤ Cϕ〈x〉−β for some

Cϕ < ∞, where 〈x〉 :=
√

1 + |x |2.

Theorem. The Anderson Hamiltonian Hω cannot have an eigenvalue with two
linearly independent fast decaying eigenfunctions with probability one.

We have the immediate corollary:

Corollary. Let I be an interval of exponential localization for the Anderson
Hamiltonian Hω. Then, with probability one, every eigenvalue of Hω in I is
simple.
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This corollary was originally obtained by Simon(8) as a consequence of a
stronger result: in intervals of localization the vectors δx , x ∈ Z

d , are cyclic for
Hω with probability one. Jaksic and Last(6) have recently extended Simon’s ideas
to prove that the singular spectrum of Hω is almost surely simple. Simon’s cyclicity
result cannot be extended to Anderson-type Hamiltonians in the continuum.

Our proof is quite transparent and intuitive, and provides a new insight on the
simplicity of eigenvalues. If an eigenvalue E of H has two linearly independent
fast decaying eigenfunctions, then the corresponding finite volume operator must
have at least two eigenvalues very close to E for large volumes. On the other
hand, the probability of two eigenvalues of the finite volume operator being close
together is very small for large volumes by an estimate due to Minami.(7) Since
these two facts are incompatible, the eigenvalue E can have at most one fast
decaying eigenfunction.

This insight should also hold in the continuum. The only step in our proof
that cannot presently be done in the continuum is the use of Minami’s estimate,(7)

which is currently known only for the Anderson model. (See Appendix A for
the statement of Minami’s inequality and an outline of its proof.) We expect this
estimate to hold in the continuum in some form. When Minami’s estimate is
extended to the continuum, our proof will give the simplicity of eigenvalues also
for continuous Anderson-type Hamiltonians.

While the simplicity of eigenvalues for Anderson-type Hamiltonians in the
continuum is not presently known, they are known to have finite multiplicity in the
region of complete localization (i.e., the region of applicability of the multiscale
analysis). Combes and Hislop(2) proved it for Anderson-type Hamiltonians in the
continuum with bounded density for the probability distribution of the strength of
single site potential. Recently, Germinet and Klein(5) proved finite multiplicity for
all eigenvalues in the region of complete localization without any extra hypotheses
than the availability of the multiscale analysis; in particular, their result does not
require the probability distribution of the strength of single site potential to have
a density.

The proof of the theorem is based on two lemmas regarding the finite volume
operators, the first one a deterministic result.

We let �L be the open box centered at the origin with side of length L > 0,
and write χL for its characteristic function. Given H = −� + V , we let HL be
the operator H restricted to �2(�L ) with zero boundary conditions outside �L .
We identify �2(�L ) with χL�2(Zd ), in which case HL = χL HχL . We write H⊥

L =
(1 − χL )H (1 − χL ), and 
L = H − HL − H⊥

L = −� + �L + �⊥
L . By Ca,b,... we

will always denote some finite constant depending only on a, b, . . .. We write χJ

for the charateristic function of the set J .

Lemma 1. Let E be an eigenvalue for H = −� + V with two linearly indepen-
dent eigenfunctions with β-decay for some β > d

2 . Then there exists C = Cd,β,ϕ1,ϕ2 ,



Simplicity of Eigenvalues in the Anderson Model 97

where ϕ1 and ϕ2 are the two eigenfunctions, such that if we set εL = C L−β+ d
2 and

JL = [E − εL , E + εL ], we have trχJL (HL ) ≥ 2 for all sufficiently large L.

Proof: Let ϕi ∈ �2(Zd ), i = 1, 2, be orthonormal with β-decay such that Hϕi =
Eϕi . Given ϕ ∈ �2(Zd ) we set ϕL = χLϕ and ϕ⊥

L = ϕ − ϕL . We have

‖ϕ⊥
i,L‖ ≤ εL and ‖ϕi,L‖ ≥

√
1 − ε2

L , i = 1, 2, (1)

∣∣〈ϕ1,L , ϕ2,L〉∣∣ ≤ ε2
L , (2)

‖(HL − E)ϕi,L‖ = ‖
Lϕ⊥
i,L‖ ≤ C ′

d,β,ϕ1,ϕ2
L−β+ d−1

2 ≤ εL , i = 1, 2, (3)

for all large L (assumed from now on), with εL = Cd,β,ϕ1,ϕ2 L−β+ d
2 .

It follows that ϕ1,L and ϕ2,L are linearly independent, and hence their linear
span VL has dimension two. Moreover, we can check that

‖(HL − E)ψ‖ ≤ 2εL‖ψ‖ for all ψ ∈ VL . (4)

Now let JL = [E − 3εL , E + 3εL ], and set PL = χJL (HL ), QL = I − PL .
Then for all ψ ∈ VL we have, using (4),

‖QLψ‖ ≤ ‖ (3εL )−1 ‖(HL − E)QLψ‖ = (3εL )−1 ‖QL (HL − E)ψ‖

≤ (3εL )−1 ‖(HL − E)ψ‖ ≤ 2

3
‖ψ‖, (5)

and hence

‖PLψ‖2 = ‖ψ‖2 − ‖QLψ‖2 ≥ 5

9
‖ψ‖2. (6)

Thus PL is injective on VL and we conclude that trPL ≥ dim VL = 2.
Redefining the constant in the definition of εL we get the lemma. �

The second lemma is probabilistic; it says that the probability of two eigen-
values (perhaps equal) of the finite volume operator being close together is very
small for large volumes. It depends crucially on the following beautiful estimate
of Minami ([7], Lemma 2 and proof of Eq. (2.48)):

P
{
trχJ (Hω,L ) ≥ 2

} ≤ π2‖ρ‖2
∞|J |2L2d (7)

for all intervals J and length scales L ≥ 1. Since Minami’s estimate is the heart
of our proof, we outline its proof in Appendix A.

Lemma 2. Let Hω be the Anderson Hamiltonian. If I is a bounded interval and
q > 2d, let EL ,I,q denote the event that trχJ (Hω,L ) ≤ 1 for all subintervals J ⊂ I
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with length |J | ≤ L−q . Then

P{EL ,I,q} ≥ 1 − 8π2‖ρ‖2
∞(|I | + 1)L−q+2d . (8)

Proof: We can cover the interval I by 2
([

Lq

2 |I |] + 1
) ≤ Lq |I | + 2 intervals of

length 2L−q , in such a way that any subinterval J ⊂ I with length |J | ≤ L−q

will be contained in one of these intervals. ([x] denotes the largest integer ≤ x .)
Since the complementary event, Ec

L ,I,q , occurs if there exists an interval J ⊂ I
with |J | ≤ L−q such that trχJ (Hω,L ) ≥ 2, its probability can be estimated, using
(7), by

P{Ec
L ,I,q} ≤ π2‖ρ‖2

∞(Lq |I | + 2)(2L−q )2L2d ≤ 8π2‖ρ‖2
∞(|I | + 1)L−q+2d , (9)

and hence (8) follows. �

Proof of Theorem: Let I be a bounded open interval, and set Lk = 2k for
k = 1, 2, . . .. It follows from Lemma 2, applying the Borel-Cantelli Lemma, that
if q > 2d, then for P-a.e. ω there exists k(q, ω) < ∞ such that the event ELk ,I,q

occurs for all k ≥ k(q, ω). But if E ∈ I is an eigenvalue for Hω with two linearly
independent eigenfunctions with β-decay for some β > 5d

2 , then Lemma 1 tells us
that for all large k we have trχJk (Hω,Lk ) ≥ 2, where Jk = JLk is a subinterval of I

with |Jk | ≤ C L
−(β− d

2 )
k , which is not possible since if β > 5d

2 there exists q > 2d
such that β − d

2 > q. �

A. MINAMI’S ESTIMATE

In this appendix we state Minami’s estimate (in two useful forms) and outline
the steps in its proof.

Minami’s estimate(7): Let Hω be the Anderson Hamiltonian. Then

P
{
trχJ (Hω,L ) ≥ 2

} ≤ E
{{

trχJ (Hω,L )
}2− trχJ (Hω,L )

}
≤ π2‖ρ‖2

∞|J |2L2d

(10)
for all intervals J and length scales L ≥ 1.

Outline of the proof: Let J = [E − η, E + η] be an interval, in which case

χJ (λ) ≤ 2η � (λ − (E + iη))−1 for all λ ∈ R. (11)

Thus, with RL (z) = (HL − z)−1 and GL (z; x, y) = 〈δx , RL (z)δy〉, we have

P{trχJ (Hω,L ) ≥ 2} ≤ E{(trχJ (Hω,L ))2 − trχJ (Hω,L )} (12)



Simplicity of Eigenvalues in the Anderson Model 99

= E




∑
E1,E2∈σ (HL ); E1 
=E2

χJ (E1)χJ (E2)


 (13)

≤ E

{ ∑
E1,E2∈σ (HL ); E1 
=E2

� 2η

E1 − (E + iη)
� 2η

E2 − (E + iη)

}
(14)

= (2η)2
E

{(
tr�RL (E + iη)

)2 − tr
{
(�RL (E + iη))2}} (15)

= (2η)2
∑

x,y∈�L

E

{
det

[�GL (E + iη; x, x) �GL (E + iη; x, y)
�GL (E + iη; y, x) �GL (E + iη; y, y)

]}
(16)

≤ (2η)2π2‖ρ‖2
∞L2d = π2‖ρ‖2

∞|J |2L2d , (17)

where (14)–(16) is given in ([7], Eq. (2.64)) and (17) follows from ([7],
Lemma 2). �
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